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1. Introduction

In this paper the mechanical vibration of a one degree-of-freedom mass–spring system under
the influence of a constant positive excitation force (a > 0Þ is considered. The elastic property of
the spring is non-linear and is a quadratic function of the deflection y: The mathematical model of
the system is

.y þ cy þ ð7Þb2 sign jyjðy2Þ ¼ a; ð1Þ

where c and b2 are constant coefficients of the linear and quadratic term, respectively. The sign
function is used to elastic force in the spring to satisfy the antisymmetric condition. Namely, if the
spring is extended, a force which has the tendency to relax and to put the spring into the previous
state appears. The same happens when the spring is pressed. In the first case the deformation is
positive, and in the second case it is negative. Due to the fact that the force in the spring is a
quadratic function of deformation y the change of the sign of the force is described using the sign
function. The signs in the bracket ð7Þ indicate the hard and the soft spring, respectively; the plus
sign in the bracket is for hard spring and the minus sign in the bracket is for soft spring. This
meaning of the bracket ð7Þ is applied in the whole paper. The forced vibration of system (1) is
subject to the following initial conditions:

yð0Þ ¼ y0 ¼ 0; ’yð0Þ ¼ ’y0 ¼ 0: ð2Þ

For analyzing the vibration properties of the mechanical system, the exact solution of Eq. (1) with
respect to the initial conditions (2) is obtained. For the case when the non-linearity is small
(b2 � jej51Þ a perturbation (series) solution is developed which is usual by more convenient for
practical application than the exact solution.
In the paper of Mickens [1] the uniformly valid asymptotic solution for a second order

differential equation with the small quadratic non-linearity which does not change its sign due to
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the fact that the model

.y þ cy ¼ a þ ey2; ð3Þ

describes another physical phenomena like those in general relativity [2,3] or solid-state physics
[4]. The arbitrary conditions are

yð0Þ ¼ y0 ¼ A; ’yð0Þ ¼ ’y0 ¼ 0: ð4Þ

In Refs. [5–7] a list of alternative asymptotic methods for solving Eq. (3) with Eq. (4) is given. The
solution is valid only for the case when the non-linearity is small. In Ref. [8] the free vibration of
the one mechanical system where the elastic force in the spring is a strong non-linear quadratic
function of deflection

.y þ cy þ ð7Þb2 sign jyjðy2Þ ¼ 0; ð5Þ

is analyzed. The exact solution of Eq. (5) is in the form of the Jacobi elliptic function. Using the
suggested procedures for obtaining the exact and the asymptotic solution of Eq. (5), and also of
Eq. (3), in this paper the solution methods for Eq. (1) are developed.

2. Exact solution

Assume an exact solution of Eq. (1) for the initial conditions (2) in the form of the Jacobi
elliptic function

y ¼ A sn2ðot; k2Þ; ð6Þ

where o is the frequency of vibrations, A is the amplitude of vibrations and k2 is the modulus of
the elliptic Jacobi function sn [9]. Namely, it is assumed that the solution of Eq. (1) is of an
oscillatory type and one of the most general types of oscillatory functions is the Jacobi elliptic
function with a special group of circular functions. In solution (6) there are three unknown values:
A; o and k2 which have to be determined.
The first and second time derivatives of Eq. (6) are

’y ¼ 2Ao snðot; k2Þ cnðot; k2Þ dnðot; k2Þ;

.y ¼ 2Ao2ð3k2 sn4 � 2ðk2 þ 1Þ sn2 þ 1Þ: ð7Þ

Substituting solution (6) and the corresponding time derivatives (7) into Eq. (1) and equating
coefficients by the same order of the function sn, the following algebraic equations are obtained:

sn4: ð7Þ sign jAjb2A þ 6o2k2 ¼ 0; ð8Þ

sn2: c � 4o2ðk2 þ 1Þ ¼ 0; ð9Þ

sn0: 2Ao2 ¼ a: ð10Þ

Solving Eqs. (8)–(10) the values of A; o and k2 are obtained, i.e., the exact solution (6) of Eq. (1)
with respect to the initial conditions (2).
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2.1. Discussion of the parameters

1. The condition of the oscillatory motion of the mass–spring system is o2 > 0: From Eq. (10) it
is evident that the previous condition is satisfied only for A > 0: For the positive amplitude A the
vibration y (6) is for all values of time t a non-negative function. It means that the deflection y

does not change its sign: it is positive for the whole time interval of motion. This fact
tremendously simplifies the solution procedure. Namely, that sign jxj is always positive and the
differential equation of motion corresponds to

.y þ cy þ ð7Þb2y2 ¼ a: ð11Þ

2. From Eq. (8) the modulus of the Jacobi function is

k2 ¼ �ð7Þ
b2A

6o2
: ð12Þ

According to Eq. (12) it is evident that the modulus of the Jacobi function is negative ðk2o0Þ for
the mass–hard spring system, and positive (k2 > 0Þ for the mass–soft spring system.
3. Analyzing Eq. (9), i.e.,

o2 ¼
c

4ð1þ k2Þ
; ð13Þ

and using the previous remarks it can be concluded that the modulus of the Jacobi elliptic
function is for the mass–hard spring system in the interval

�1ok2o0: ð14Þ

Due to the fact that the modulus of the Jacobi function of the mass–hard spring is negative, it is
convenient to transform the sn Jacobi function to an sd function with the corresponding positive
Jacobi elliptic function [10]. Then solution (6) is

y ¼
A

ð1þ jk2jÞ
sd2ðo1t; k21Þ; ð15Þ

where

o1 ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jk2j

p
; k21 ¼

jk2j
ð1þ jk2jÞ

: ð16Þ

4. Analyzing relation (13) and previous comments on the modulus of Jacobi function it is
evident that the frequency of vibration is higher for the mass–hard spring system and lower for the
mass–soft spring compares to the frequency of the system with linear spring.
5. For the mass–linear spring system k2 ¼ 0; the frequency of vibration (13) is o ¼

ffiffiffi
c

p
=2 and

the amplitude of vibration (10) is A ¼ 2ða=cÞ: The Jacobi elliptic function sn transforms to the
circular sin function and solution (1) for b2 ¼ 0 is the well-known result for the mass–linear spring
system with constant excitation

y ¼
2a

c
sin2

ffiffiffi
c

p
2

t

 !
¼

a

c
ð1� cos

ffiffiffi
c

p
tÞ: ð17Þ
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6. Solving the system of Eqs. (8)–(10) and applying the previous considerations the amplitude of
vibration is

A ¼ �
3c

4b2
ð7Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð7Þ

16

3

ab2

c2

s2
4

3
5: ð18Þ

The amplitude of vibration depends on the excitation force a; coefficient of linear elasticity c and
the coefficient of the non-linearity b2: There is a limitation for the amplitude of the system with
soft spring. Namely, the motion of the mass–soft spring system is oscillatory for 1�
ð16=3Þðab2=c2Þ > 0; i.e.,

ao
3

16

c2

b2
: ð19Þ

7. The motion is periodical and the period of vibration is

T ¼
4Kðk2Þ

o
; ð20Þ

where K is the total elliptic integral of the first kind [9].
8. The forced vibration of the mechanical system described with Eq. (1) and initial conditions

(2) is

y ¼ A sn2
ffiffiffiffiffiffi
a

2A

r
t;�ð7Þ

b2A2

2a

� �
; ð21Þ

where A is given by Eq. (18).

2.2. The power series solution

Consider the case when the non-linearity of the spring is small, i.e., b2 ¼ e; where e is a small
parameter. The mathematical model is

.y þ cy ¼ a � ð7Þe sign jyjy2; ð22Þ

where the parameters a; c and e are positive.
For the linear oscillator with mathematical model

.y þ cy ¼ a; ð23Þ

for the initial conditions (2) and a > 0 solution (17) is non-negative for all values of time t: For the
case when the quadratic non-linearity is small and the solution of Eq. (22) differs from the linear
solution only for a small value, it can be assumed that the oscillation remains a non-negative time
function. Then the change of the sign of the quadratic term in Eq. (22) is neglected and Eq. (22)
transforms to

.y þ cy ¼ a � ð7Þey2: ð24Þ

Introducing the new variable

x ¼ y �
a

c
; ð25Þ
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into the differential equation (24) gives

.x þ cx ¼ �ð7Þe x þ
a

c

 �2
; ð26Þ

with the initial values

xð0Þ ¼ X0 ¼ �
a

c
; ’xð0Þ ¼ ’X0 ¼ 0: ð27Þ

Now suppose that the solution of Eq. (26) is a series with respect to powers of the small
parameter e

x ¼ x0ðtÞ þ ex1ðtÞ þ e2x2ðtÞ þ?; ð28Þ

where x0;x1; x2;y have to be determined to satisfy Eq. (26) for arbitrary values of e: For the
oscillatory solution, the frequency o is a function of the initial amplitude X0 and it is assumed as

o2 ¼ c þ eb1ðX0Þ þ e2b2ðX0Þ þ?; ð29Þ

i.e.,

c ¼ o2 � eb1ðX0Þ � e2b2ðX0Þ þ?; ð30Þ

where b1ðX0Þ; b2ðX0Þ;y are unknown coefficients for the initial amplitude (27). Substituting
Eqs. (28) and (30) into Eq. (26) and equating to zero the terms by the same order of the small
parameter e; the following system of differential equations for O ¼ Oðe3Þ is obtained:

.x0 þ o2x0 ¼ 0;

.x1 þ o2x1 ¼ b1x0 � ð7Þ x0 þ
a

c

 �2
;

.x2 þ o2x2 ¼ b2x0 þ b1x1 � 2ð7Þx1 x0 þ
a

c

 �
: ð31Þ

According to Eqs. (27) and (28) the corresponding initial conditions are

x0ð0Þ ¼ X0 ¼ �
a

c
; x1ð0Þ ¼ x2ð0Þ ¼ 0;

’x0ð0Þ ¼ ’X0 ¼ 0; ’x1ð0Þ ¼ ’x2ð0Þ ¼ 0: ð32Þ

For Eq. (32) the solution of the first equation is

x0 ¼ �
a

c
cosot; o ¼

ffiffiffi
c

p
: ð33Þ

Substituting solution (33) into the second equation (31), the secular term in the equation vanishes
for

b1 ¼ 2ð7Þ
a

c
; ð34Þ
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and the solution in the first approximation is

x1 ¼ ð7Þ
1

c

a

c

 �2
4
3
cosot � 3

2
þ 1
6
cos 2ot

� �
: ð35Þ

Substituting Eqs. (33)–(35) into the third equation (31) the secular term is eliminated if

b2 ¼ �
17

6c

a

c

 �2
; ð36Þ

and the solution is

x2 ¼
1

c2
a

c

 �3
4
3
� 125
144
cosot � 4

9
cos 2ot � 1

48
cos 3ot

� �
: ð37Þ

Using the obtained results the approximate solution of order Oðe3Þ for Eq. (22) is

y ¼
a

c

 �
ð1� cosotÞ

þ ð7Þ
e
c

a

c

 �2
4
3
cosot � 3

2
þ 1
6
cos 2ot

� �
þ

e2

c2
a

c

 �3
4
3
� 125
144
cosot � 4

9
cos 2ot � 1

48
cos 3ot

� �
; ð38Þ

where

o2 ¼ c þ 2eð7Þ
a

c

 �
�
17

6

e2

c

a

c

 �2
: ð39Þ

Analyzing relation (39), it is evident that the frequency of vibration depends on the type of the
spring. For the mass–hard spring system the frequency of vibration is higher and for the mass–soft
spring system it is lower. From Eq. (38), it is seen that the amplitude of vibration is lower for the
mass–hard spring system than for the linear system. The amplitude of vibration of the mass–soft
spring system is higher than for the linear system.
Comparing solution (38) and (39) with the uniformly valid approximate solution [1], it can be

concluded that they are equal in the first approximation.

3. Comparison of the solutions

Now compare the suggested approximate solution (29), (30) with the exact solution (21), (14).
The parameters of the system are c ¼ 1 and e ¼ 0:1; and the excitation force is a ¼ 0:1 and 1,
respectively. In Fig. 1 the exact yE and the approximate yA solution for the excitation parameter
a ¼ 0:1 (Fig. 1a) and a ¼ 1 (Fig. 1b) are plotted. It can be concluded that the accuracy of the
approximate solution depends not only on the value of the small parameter e but also on the value
of the parameter a: For ep0:1 and ap0:1 the approximate solution is on the top of the exact
solution. For ep0:1 and aX0:1 the difference between the approximate and the exact solution is
evident.
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Fig. 1. yA2t and yE2t diagrams for a ¼ 0:1 (a) and 1 (b).
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